Question : If $9\sqrt{x}=\sqrt{12}+\sqrt{147}$, then $x$ =?
Option 1: 5
Option 2: 3
Option 3: 2
Option 4: 4
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 3
Solution : $9\sqrt{x} = \sqrt{12} + \sqrt{147}$ ⇒ $9\sqrt{x} = 2\sqrt{3} + 7\sqrt{3}$ ⇒ $9\sqrt{x} = 9\sqrt{3}$ $\therefore x = 3$ Hence, the correct answer is 3.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Question : If $x=(7+3 \sqrt{5})$, then find the value of $x^2+\frac{1}{x^2}$.
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $x=\frac{1}{x-5}(x>0)$, then the value of $x+\frac{1}{x}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile