Question : If $2x^2+5 x+1=0$, then one of the values of $x-\frac{1}{2 x}$ is:
Option 1: $\frac{\sqrt{17}}{2}$
Option 2: $\frac{13}{2}$
Option 3: $\frac{5}{2}$
Option 4: $\frac{\sqrt{13}}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{\sqrt{17}}{2}$
Solution : $2 x^2+5 x+1=0$ Dividing the number by $2x$, we get, $⇒x+\frac{5x}{2x}+\frac{1}{2x}$ = 0 $\therefore x+\frac{1}{2x} = -\frac{5}{2}$ Using the formula $(a-b)^2 = (a+b)^2-4ab$, we get $(x-\frac{1}{2x})^2 = (x+\frac{1}{2x})^2 - 4.x.\frac{1}{2x}$ $⇒(x-\frac{1}{2x})^2 = (-\frac{5}{2})^2-2$ $⇒(x-\frac{1}{2x})^2 = \frac{25}{4}-2$ $\therefore(x-\frac{1}{2x}) =\frac{\sqrt{17}}{2}$ Hence, the correct answer is $\frac{\sqrt{17}}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $x=\frac{1}{x-3},(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $x^4+y^4+x^2 y^2=17 \frac{1}{16}$ and $x^2-x y+y^2=5 \frac{1}{4}$, then one of the values of $(x-y)$ is:
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile