Question : If $A+B=90^{\circ}$, then the expression $\frac{\cot A}{\cot B}+\cos ^2 A+\cos ^2 B$ is equal to:
Option 1: $\cot ^2 B$
Option 2: $\operatorname{cosec}^2 A$
Option 3: $\cot ^2 A$
Option 4: $\operatorname{cosec}^2 B$
Correct Answer: $\operatorname{cosec}^2 A$
Solution : $A+B=90^{\circ}$ $B=90^{\circ}-A$ $\frac{\cot A}{\cot B}+\cos ^2 A+\cos ^2 B$ = $\frac{\cot A}{\cot (90^{\circ}-A)}+\cos ^2 A+\cos ^2 (90^{\circ}-A)$ = $\frac{\cot A}{\tan A}+\cos ^2 A+\sin ^2A$ = $\cot^2 A +1$ = $\operatorname{cosec}^2 A$ Hence,the correct answer is $\operatorname{cosec}^2 A$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\operatorname{cosec} A+\cot A=3$, $0 \leq A \leq 90^{\circ}$, then find the value of cos A.
Question : If $\frac{1}{\operatorname{cosec} \theta+1}+\frac{1}{\operatorname{cosec} \theta-1}=2 \sec \theta, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{\tan \theta+2 \sec \theta}{\operatorname{cosec} \theta}$ is:
Question : If $\frac{\cos \theta}{1-\sin \theta}+\frac{\cos \theta}{1+\sin \theta}=4,0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\sec \theta+\operatorname{cosec} \theta+\cot \theta) ?$
Question : The value of $\frac{\sin ^2 30^{\circ}+\cos ^2 60^{\circ}-\sec 35^{\circ} \cdot \sin 55^{\circ}}{\sec 60^{\circ}+\operatorname{cosec} 30^{\circ}}$ is equal to:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile