Question : If $\sqrt[3]{a}+\sqrt[3]{b}=\sqrt[3]{c}$, then the simplest value of $\left (a+b+c \right )^{3}+27abc$ is:
Option 1: $-1$
Option 2: $3$
Option 3: $-3$
Option 4: $0$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $\sqrt[3]{a} + \sqrt[3]{b} = \sqrt[3]{c}$ ⇒ $\sqrt[3]{a} + \sqrt[3]{b} - \sqrt[3]{c} = 0$ We know that if $x+y+z=0$, $ x^3+y^3+z^3=3xyz$ $\therefore \ a + b - c = -3\left(abc\right)^{\frac{1}{3}}$ On cubing both sides, ⇒ $(a+b-c)^3=-27abc$ $\therefore (a + b - c)^3 + 27abc=0$ Hence, the correct answer is $0$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $a+b :\sqrt{ab} = 4:1 $ where $ a > b > 0$, then $ a:b$ is:
Question : If $\left (2a-1 \right )^{2}+\left (4b-3 \right)^{2}+\left (4c+5 \right)^{2}=0$, then the value of $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}$ is:
Question : If $\small x=a\left (b-c \right),\; y=b\left (c-a \right) ,\; z=c\left (a-b \right)$, then the value of $\left (\frac{x}{a} \right)^{3}+\left (\frac{y}{b} \right)^{3}+\left (\frac{z}{c} \right)^{3}$ is:
Question : If $\left (a+b \right):\left (b+c \right):\left (c+a \right)= 6:7:8$ and $\left (a+b+c \right) = 14,$ then value of $c$ is:
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile