Question : If $x^2-5 x+1=0$, then the value of $\frac{x^6+x^4+x^2+1}{5 x^3}=?$
Option 1: 30
Option 2: 25
Option 3: 23
Option 4: 28
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 23
Solution : Given, $x^2-5 x+1=0$ $⇒x^2+1=5 x$----(i) Multiplying whole equation by $x^4$, we get: $⇒x^6+x^4=5 x^5$ Also dividing equation (i) by $x$, we get, $x+\frac{1}{x}=5$ Now, $\frac{x^6+x^4+x^2+1}{5 x^3}$ = $\frac{5 x^5+5 x}{5 x^3}$ = $x^2+\frac{1}{x^2}$ = $(x+\frac{1}{x})^2-2$ = $5^2-2$ = $23$ Hence, the correct answer is 23.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $x+\frac{1}{x}=5$, then the value of $\frac{x}{1+x+x^2}$ is:
Question : If $x+5+\frac{1}{x+1}=6$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
Question : If $\frac{5}{2}-\left (\frac{6}{5}\right )\left (x-\frac{15}{2} \right)=\frac{-x}{5}$, then what is the value of $x$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile