Question : If $(x-\frac{1}{x})^2=\sqrt3$, then the value of $(x^6+\frac{1}{x^6})$ equals:
Option 1: 90
Option 2: 100
Option 3: 110
Option 4: 120
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 110
Solution : Given: $(x-\frac{1}{x})^2=\sqrt3$ Squaring both sides, we get, $⇒(x-\frac{1}{x})^2=(\sqrt3)^2$ $⇒x^2+\frac{1}{x^2}–2=3$ $⇒x^2+\frac{1}{x^2}=5$ Cubing on both sides, we get, $⇒(x^2+\frac{1}{x^2})^3=5^3$ $⇒x^6+\frac{1}{x^6}+3(x^2+\frac{1}{x^2})=125$ $⇒x^6+\frac{1}{x^6}+3\times5=125$ $⇒x^6+\frac{1}{x^6}=125-15$ $\therefore x^6+\frac{1}{x^6}=110$ Hence, the correct answer is 110.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Question : If $\frac{1}{6}$ of $x$ – $\frac{7}{2}$ of $\frac{3}{7}$ equals to $(-\frac{7}{4})$, then the value of $x$ is:
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Question : If $x=\sqrt{\frac{2+\sqrt3}{2-\sqrt3}}$, then what is the value of $(x^{2}+x-9)$?
Question : If $x-\frac{3}{x}=6, x \neq 0$, then the value of $\frac{x^4-\frac{27}{x^2}}{x^2-3 x-3}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile