Question : If $x=\sqrt3+\frac{1}{\sqrt3}$, then the value of $(x-\frac{\sqrt{126}}{\sqrt{42}})(x-\frac{1}{x-\frac{2\sqrt3}{3}})$ is:
Option 1: $\frac{5\sqrt3}{6}$
Option 2: $\frac{2\sqrt3}{3}$
Option 3: $\frac{5}{6}$
Option 4: $\frac{2}{3}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{5}{6}$
Solution : $x=\sqrt{3}+\frac{1}{\sqrt{3}}$ ⇒ $x=\frac{3+1}{\sqrt{3}}$ ⇒ $x=\frac{4}{\sqrt{3}}$ Now, $(x-\frac{\sqrt{126}}{\sqrt{42}} )(x-\frac{1}{x-\frac{2\sqrt{3}}{3}})$ Putting the value of $x$, we get, = $(\frac{4}{\sqrt{3}}-\frac{\sqrt{126}}{\sqrt{42}})(\frac{4}{\sqrt{3}}-\frac{1}{\frac{4}{\sqrt{3}}-\frac{2\sqrt{3}}{3}})$ = $(\frac{4\sqrt{42}-\sqrt{126}\sqrt{3}}{\sqrt{42}\sqrt{3}} )(\frac{4}{\sqrt{3}}-\frac{1}{\frac{2}{\sqrt{3}}})$ = $(\frac{4\sqrt{42}-3\sqrt{42}}{\sqrt{42}\sqrt{3}})(\frac{4}{\sqrt{3}}-\frac{\sqrt{3}}{2})$ = $(\frac{\sqrt{42}}{\sqrt{42}\sqrt{3}})(\frac{4}{\sqrt{3}}-\frac{\sqrt{3}}{2})$ = $(\frac{1}{\sqrt{3}})(\frac{8-3}{2\sqrt{3}})$ = $\frac{5}{6}$ Hence, the correct answer is $\frac{5}{6}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Question : The simplified value of $\frac{3\sqrt 2 }{\sqrt3 + \sqrt6} - \frac{4 \sqrt 3 }{\sqrt{6}+ \sqrt {2}} + \frac{\sqrt 6}{\sqrt{3}+ \sqrt 2}$ is:
Question : If $x=(7+3 \sqrt{5})$, then find the value of $x^2+\frac{1}{x^2}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile