Question : If $\operatorname{cosec}\theta+\sin\theta=\frac{5}{2}$, then the value of $(\operatorname{cosec}\theta-\sin\theta)$ is:
Option 1: $-\frac{3}{2}$
Option 2: $\frac{3}{2}$
Option 3: $-\frac{\sqrt{3}}{2}$
Option 4: $\frac{\sqrt{3}}{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{2}$
Solution : Given: $\operatorname{cosec}\theta+\sin\theta=\frac{5}{2}$ ⇒ $\frac{1}{\sin\theta}+\sin\theta=\frac{5}{2}$ ⇒ $\frac{1+\sin^{2}\theta}{\sin\theta}=\frac{5}{2}$ ⇒ $2\sin^{2}\theta-5\sin\theta+2=0$ ⇒ $2\sin^{2}\theta-4\sin\theta-1\sin\theta+2=0$ ⇒ $2\sin\theta (\sin\theta-2)-1(\sin\theta-2)=0$ ⇒ $(\sin\theta-2)(2\sin\theta-1)=0$ ⇒ $\sin\theta= 2,\frac{1}{2}$ $\sin\theta$'s value can't be 2. So, $\sin\theta=\frac{1}{2}=\sin30^{\circ}$ ⇒ $\theta=30^{\circ}$ $\operatorname{cosec}\theta-\sin\theta$ $=\operatorname{cosec}30^{\circ}-\sin30^{\circ}$ $= 2-\frac{1}{2}$ $=\frac{3}{2}$ Hence, the correct answer is $\frac{3}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sin \theta + \operatorname{cosec} \theta = \sqrt{5}$, the value of $\sin^3 \theta + \operatorname{cosec}^3 \theta = $?
Question : If $\operatorname{cosec} \theta+\cot \theta=2$, then what is the value of $\operatorname{cosec} \theta$?
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Question : If $\operatorname{cosec} \theta+\cot \theta=p$, then the value of $\frac{p^2-1}{p^2+1}$ is:
Question : If $\sin\theta+\operatorname{cosec}\theta=2$, the value of $\sin^{n}\theta+\operatorname{cosec}^{n}\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile