Question : If $x=\sqrt2+1$, then the value of $x^{4}-\frac{1}{x^{4}}$ is:
Option 1: $8\sqrt2$
Option 2: $18\sqrt2$
Option 3: $6\sqrt2$
Option 4: $24\sqrt2$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $24\sqrt2$
Solution : Given: $x=\sqrt{2}+1$ Thus, $\frac{1}{x}=\sqrt{2}-1$ $x+\frac{1}{x}=(\sqrt{2}+1)+(\sqrt{2}-1)=(\sqrt{2}+1+\sqrt{2}-1)=2\sqrt{2}$ $x-\frac{1}{x}=(\sqrt{2}+1)-(\sqrt{2}-1)=(\sqrt{2}+1-\sqrt{2}+1)=2$ So, $(x^2+\frac{1}{x^2})=6$ We know that, $x^4-\frac{1}{x^4}=(x^2+\frac{1}{x^2})(x^2-\frac{1}{x^2})=(x^2+\frac{1}{x^2})(x+\frac{1}{x})(x-\frac{1}{x})$ Putting the values we get, ⇒ $x^4-\frac{1}{x^4}=6×2×2\sqrt{2}$ $\therefore x^4-\frac{1}{x^4}=24\sqrt{2}$ Hence, the correct answer is $24\sqrt{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $x+\frac{16}{x}=8$, then the value of $x^2+\frac{32}{x^2}$ is:
Question : If $2x-\frac{2}{x}=1(x \neq 0)$, then the the value of $(x^3-\frac{1}{x^3})$ is:
Question : If $2x+\frac{2}{x}=3$, then the value of $x^{3}+\frac{1}{x^{3}}+2$ is:
Question : When $2x+\frac{2}{x}=3$, then the value of ($x^3+\frac{1}{x^3}+2)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile