Question : If $\left (2a-3 \right )^{2}+\left (3b+4 \right )^{2}+\left ( 6c+1\right)^{2}=0$, then the value of $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}+3$ is:
Option 1: $abc+3$
Option 2: $6$
Option 3: $0$
Option 4: $3$
Correct Answer: $3$
Solution : $\left(2a-3 \right )^{2}+\left (3b+4 \right )^{2}+\left (6c+1\right )^{2}=0$ ⇒ $2a-3 = 0$, $3b+4 = 0$ and $6c+1=0$ $a=\frac{3}{2}$, $b = \frac{-4}{3}$ and $c=\frac{-1}{6}$ Here, $a+b+c = \frac{3}{2} - \frac{4}{3}-\frac{1}{6}=0$ So, $a^{3}+b^{3}+c^{3}-3abc=0$ Putting these values in the given expression, $\frac{a^{3}+b^{3}+c^{3}-3abc}{a^{2}+b^{2}+c^{2}}+3$ $=0 + 3 = 3$ Hence, the correct answer is $3$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The sides of a right triangle $\triangle ABC$ are a, b, and c where c is the hypotenuse. What will be the radius of the circle of this triangle?
Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Question : If $2A=3B$, then what is the value of $\frac{A+B}{A}$?
Question : The value of $1 \frac{2}{5}-\left[3 \frac{3}{4} \div\left\{1 \frac{1}{4} \div \frac{1}{2}\left(1 \frac{1}{2} \times 3 \frac{1}{3} \div 1 \frac{1}{3}\right)\right\}\right]$ is:
Question : If $x^2-3 x+1=0$, then the value of $\left(x^4+\frac{1}{x^2}\right) \div\left(x^2+1\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile