Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Option 1: 8
Option 2: 7
Option 3: 6
Option 4: 5
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 6
Solution : Given: $x=\sqrt[3]{28}$ and $y=\sqrt[3]{27}.$ To find $x+y–\frac{1}{x^{2}+xy+y^{2}}$ Multiplying and dividing by $(x–y)$ $=x+y–\frac{(x–y)}{(x–y)(x^{2}+xy+y^{2})}$ $=x+y–\frac{(x–y)}{(x^{3}–y^{3})}$ $=x+y–\frac{(x–y)}{(28–27)}$ $=x+y–x+y$ $=2y$ $=2×\sqrt[3]{27}$ $=2×3 = 6$ Thus, $x+y-\frac{1}{x^{2}+xy+y^{2}}=6$ Hence, the correct answer is 6.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $x=\frac{\sqrt{5}-\sqrt{4}}{\sqrt{5}+\sqrt{4}}$ and $y=\frac{\sqrt{5}+\sqrt{4}}{\sqrt{5}-\sqrt{4}}$ then the value of $\frac{x^2-x y+y^2}{x^2+x y+y^2}=$?
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile