Question : If $\cos\theta=\frac{3}{5}$, then the value of $\sin\theta.\sec\theta.\tan\theta$ is:
Option 1: $\frac{9}{16}$
Option 2: $\frac{16}{9}$
Option 3: $\frac{3}{4}$
Option 4: $\frac{4}{3}$
Correct Answer: $\frac{16}{9}$
Solution : Given: $\cos\theta=\frac{3}{5}$ We know, $\cos\theta= \frac{\text{Base}}{\text{Hypotenuse}}$ Let, Base = 3, Hypotenuse = 5 So, Perpendicular = $\sqrt{5^2-3^2}=4$ $\sin\theta.\sec\theta.\tan\theta$ = $\frac{\text{Perpendicular}}{\text{Hypotenuse}}×\frac{\text{Hypotenuse}}{\text{Base}}×\frac{\text{Perpendicular}}{\text{Base}}$ = $\frac{4}{5}×\frac{5}{3}×\frac{4}{3}$ = $\frac{16}{9}$ Hence, the correct answer is $\frac{16}{9}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Question : If $\sec\theta+\tan\theta=2$, then the value of $\sec\theta$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Question : If $\cos \theta+\sec \theta=2$, then the value of $\sin ^6 \theta+\cos ^6 \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile