Question : If $x=2+\sqrt3$, then the value of $\frac{x^{2}-x+1}{x^{2}+x+1}$ is:
Option 1: $\frac{2}{3}$
Option 2: $\frac{3}{4}$
Option 3: $\frac{4}{5}$
Option 4: $\frac{3}{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{5}$
Solution : $x=2+\sqrt{3}$ $\frac{1}{x}=2–\sqrt{3}$ (by rationalisation) So, $x+\frac{1}{x}=2+\sqrt{3}+2–\sqrt{3}$ ⇒ $x+\frac{1}{x}=2+2$ $\therefore x+\frac{1}{x}=4$ Now, $\frac{x^2–x+1}{x^2+x+1}$ Dividing both the numerator and the denominator by $x$, we get, $=\frac{x–1+\frac{1}{x}}{x+1+\frac{1}{x}}$ $=\frac{(x+\frac{1}{x})–1}{(x+\frac{1}{x})+1}$ $=\frac{4–1}{4+1}$ $=\frac{3}{5}$ Hence, the correct answer is $\frac{3}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\sqrt{\frac{2+\sqrt3}{2-\sqrt3}}$, then what is the value of $(x^{2}+x-9)$?
Question : If $x+\frac{1}{x}=\sqrt{13}$, then what is the value of $x^{5}-\frac{1}{x^{5}}$?
Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile