Question : If $0^{\circ}< A< 90^{\circ}$, then the value of $\tan ^{2}A+\cot^{2}A-\sec^{2}A \operatorname{cosec}^{2}A$ is:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: –2
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –2
Solution : Given: $0^{\circ}< A< 90^{\circ}$ $\tan ^{2}A+\cot^{2}A-\sec^{2}A \operatorname{cosec}^2A$ = $\frac{\sin^2 A}{\cos^2 A}+\frac{\cos^2 A}{\sin^2 A}-\frac{1}{\cos^2A\sin^2A}$ = $\frac{\sin^4+\cos^4-1}{\cos^2A\sin^2A}$ = $\frac{(\sin^2A+\cos^2A)^2-2\sin^2\cos^2A-1}{\cos^2A\sin^2A}$ = $\frac{1-2\sin^2A\cos^2A-1}{\cos^2A\sin^2A}$ = $\frac{-2\sin^2A\cos^2A}{\cos^2A\sin^2A}$ = $-2$ Hence, the correct answer is –2.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Question : The value of $\frac{\sec 54^{\circ}}{\operatorname{cosec} 36^{\circ}}+\frac{\tan 70^{\circ}}{\cot 20^{\circ}}-2 \tan 45^{\circ}$ is equal to:
Question : Find the value of $\cot ^2B- \operatorname{cosec}^2B$ for $ 0<B<90^{\circ}.$
Question : If $\operatorname{tan} 15^{\circ}=2-\sqrt{3}$, then the value of $\operatorname{tan} 15^{\circ} \operatorname{cot} 75^{\circ}+\operatorname{tan} 75^{\circ} \operatorname{cot} 15^{\circ}$ is:
Question : The value of the expression
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile