Question : If $\sqrt{3}\tan\theta=3\sin\theta$, then the value of $(\sin^{2}\theta-\cos^{2}\theta)$ is:
Option 1: $1$
Option 2: $3$
Option 3: $\frac{1}{3}$
Option 4: None
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{3}$
Solution : Given: $\sqrt{3}\tan\theta=3\sin\theta$ ⇒ $\sqrt{3}\frac{\sin\theta}{\cos\theta}=3\sin\theta$ ⇒ $\cos \theta=\frac{1}{\sqrt{3}}$ So, $\sin^{2}\theta-\cos^{2}\theta=1-\cos^{2} \theta-\cos^{2} \theta=1-2\cos^{2} \theta$ Putting the value of $\cos \theta=\frac{1}{\sqrt{3}}$, we have, = $1-2×(\frac{1}{\sqrt{3}})^{2}$ = $1-\frac{2}{3}$ = $\frac{1}{3}$ Hence, the correct answer is $\frac{1}{3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Question : If $\sin \theta \cos \theta=\frac{\sqrt{2}}{3}$,then the value of $\left(\sin ^6 \theta+\cos ^6 \theta\right)$ is:
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Question : If $\sin \theta-\cos \theta=0$, then what is the value of $\sin ^2 \theta+\tan ^2 \theta$ ?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile