Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Option 1: $\cot^{2}\alpha$
Option 2: $\cot^{2}\beta$
Option 3: $\tan^{2}\alpha$
Option 4: $\tan^{2}\beta$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
Correct Answer: $\tan^{2}\alpha$
Solution :
Given: $\cos^{2}\alpha–\sin^{2}\alpha=\tan^{2}\beta$
We know that: $1+\tan^{2}\alpha=\sec^{2}\alpha$
So, $\cos^{2}\alpha-\sin^{2}\alpha=\sec^{2}\beta-1$
⇒ $\cos^{2}\alpha-\sin^{2}\alpha+1=\sec^{2}\beta$
⇒ $\cos^{2}\beta=\frac{1}{\cos^{2}\alpha–\sin^{2}\alpha+(\sin^{2}\alpha+\cos^{2}\alpha)}$
⇒ $\cos^{2}\beta=\frac{1}{2\cos^{2}\alpha}$
Also, $\sin^{2}\beta=1-\cos^{2}\beta=1-\frac{1}{2\cos^{2}\alpha}$
So, $\cos^{2}\beta-\sin^{2}\beta$
$=\frac{1}{2\cos^{2}\alpha}-(1-\frac{1}{2\cos^{2}\alpha})$
$= \frac{1}{\cos^{2}\alpha}-1$
$= \sec^{2}\alpha-1$
$= \tan^{2}\alpha$
Hence, the correct answer is $\tan^{2}\alpha$.
Related Questions
Know More about
Staff Selection Commission Combined High ...
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Get Updates BrochureYour Staff Selection Commission Combined Higher Secondary Level Exam brochure has been successfully mailed to your registered email id “”.