Question : If $\cos^{2}\alpha-\sin^{2}\alpha=\tan^{2}\beta$, then the value of $\cos^{2}\beta-\sin^{2}\beta$ is:
Option 1: $\cot^{2}\alpha$
Option 2: $\cot^{2}\beta$
Option 3: $\tan^{2}\alpha$
Option 4: $\tan^{2}\beta$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\tan^{2}\alpha$
Solution : Given: $\cos^{2}\alpha–\sin^{2}\alpha=\tan^{2}\beta$ We know that: $1+\tan^{2}\alpha=\sec^{2}\alpha$ So, $\cos^{2}\alpha-\sin^{2}\alpha=\sec^{2}\beta-1$ ⇒ $\cos^{2}\alpha-\sin^{2}\alpha+1=\sec^{2}\beta$ ⇒ $\cos^{2}\beta=\frac{1}{\cos^{2}\alpha–\sin^{2}\alpha+(\sin^{2}\alpha+\cos^{2}\alpha)}$ ⇒ $\cos^{2}\beta=\frac{1}{2\cos^{2}\alpha}$ Also, $\sin^{2}\beta=1-\cos^{2}\beta=1-\frac{1}{2\cos^{2}\alpha}$ So, $\cos^{2}\beta-\sin^{2}\beta$ $=\frac{1}{2\cos^{2}\alpha}-(1-\frac{1}{2\cos^{2}\alpha})$ $= \frac{1}{\cos^{2}\alpha}-1$ $= \sec^{2}\alpha-1$ $= \tan^{2}\alpha$ Hence, the correct answer is $\tan^{2}\alpha$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\alpha +\beta =90^{\circ}$, then the expression $\frac{\tan \alpha}{\tan \beta}+\sin^{2}\alpha+\sin^{2}\beta$ is equal to:
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Question : If $\alpha +\beta =90^{0}$, then value of $\left (1-\sin^{2}\alpha \right)\left (1-\cos^{2}\alpha \right)\times \left (1+\cot^{2}\beta \right)\left (1+\tan^{2}\beta \right)$ is:
Question : If $\tan \alpha=\frac{1}{\sqrt{3}}$ and $\tan \beta=\sqrt{3}$ then what is the value of $\cos (\alpha+\beta)$?
Question : If $\alpha$ and $\beta$ are positive acute angles, $\sin (4\alpha -\beta )=1$ and $\cos (2\alpha +\beta)=\frac{1}{2}$, then the value of $\sin (\alpha +2\beta)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile