Question : If $(x-\frac{1}{3x})=\frac{1}{3}$, then the value of $3(x-\frac{1}{3x})$ is:
Option 1: –1
Option 2: –2
Option 3: 1
Option 4: 2
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : Given: $(x-\frac{1}{3x})=\frac{1}{3}$ Multiplying both sides by 3, we get, $⇒3(x-\frac{1}{3x})=\frac{1}{3}×3$ $\therefore 3(x-\frac{1}{3x})=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac {x^2+3x+1}{x^2–3x+1}=\frac{1}{2 }$, then the value of $(x+\frac{1}{x})$ is:
Question : If $(x+\frac{1}{x})=–2$, then the value of $(x^7+\frac{1}{x^7})$ is:
Question : If $x+ \frac{1}{x} =2$, then the value of $({x}^{99}+ \frac{1}{x^{99}} –2)$ is:
Question : If $\frac{x}{2}-\frac{\left [4\left (\frac{15}{2}-\frac{x}{3} \right ) \right ]}{3} = –\frac{x}{18}$ then what is the value of $x$?
Question : If $x^2+\frac{1}{x^2}=2$, then the value of $x-\frac{1}{x}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile