Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Option 1: $2$
Option 2: $2\frac{1}{2}$
Option 3: $3$
Option 4: $\frac{4}{5}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $2$
Solution : Given: $\tan\theta=1$ $\tan\theta=\tan45^{\circ}$ ⇒ $\theta=45^{\circ}$ Putting the value of $\theta$ in the given expression, $= \frac{8\sin45^{\circ}\:+\:5\cos45^{\circ}}{\sin^{3}45^{\circ}\:-\:2\cos^{3}45^{\circ}\:+\:7\cos45^{\circ}}$ $= \frac{8×\frac{1}{\sqrt{2}}\:+\:5×\frac{1}{\sqrt{2}}}{(\frac{1}{\sqrt{2}})^{3}\:-\:2×(\frac{1}{\sqrt{2}})^{3}\:+\:7×\frac{1}{\sqrt{2}}}$ $= \frac{(8\:+\:5)×\frac{1}{\sqrt{2}}}{(\frac{1}{2\sqrt{2}})\:-\:2×(\frac{1}{2\sqrt{2}})\:+\:(\frac{7}{\sqrt{2}} \times \frac{2}{2})}$ $= \frac{\frac{13}{\sqrt{2}}}{\frac{1}{2\sqrt{2}}\:×\:(1\:-\:2\:+\;14)}$ $= \frac{\frac{13}{\sqrt{2}}}{\frac{13}{2\sqrt{2}}}$ $= 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $\tan \theta=\frac{4}{3}$, then the value of $\frac{3\sin \theta+ 2\cos \theta}{3\sin \theta – 2 \cos \theta}$ is:
Question : If $\frac{\sin ^2 \theta}{\cos ^2 \theta-3 \cos \theta+2}=1, \theta$ lies in the first quadrant, then the value of $\frac{\tan ^2 \frac{\theta}{2}+\sin ^2 \frac{\theta}{2}}{\tan \theta+\sin \theta}$ is:
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\sqrt{3} \tan \theta=3 \sin \theta$, then what is the value of $\sin ^2 \theta-\cos ^2 \theta$?
Question : Which of the following is equal to $[\frac{\tan \theta+\sec \theta–1}{\tan \theta–\sec \theta+1}]$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile