Question : If $p^{3}-q^{3}=(p-q)[(p+q)^{2}-xpq$, then the value of $x$ is:
Option 1: 1
Option 2: –1
Option 3: 2
Option 4: –2
Latest: SSC CGL 2024 final Result Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 1
Solution : Given: $p^{3}-q^{3}=(p-q)[(p+q)^{2}–xpq]$ ⇒ $p^{3}-q^{3}=(p-q)(p^{2}+q^{2}+2pq–xpq)$ ⇒ $p^{3}-q^{3}=(p-q)(p^{2}+q^{2}+pq(2-x)$ ----(1) We know the formula of $a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})$ Comparing this with equation (1), we have: ⇒ $(2-x)=1$ ⇒ $x=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $(x+\frac{1}{x})^2=3$, then what is the value of $x^6 + x^{–6}$?
Question : If $x^{2}+\frac{1}{x^{2}} = 98(x>0)$, then the value of $x^{3}+\frac{1}{x^{3}}$ is:
Question : If $(x+\frac{1}{x})^{2}=3$, then the value of $(x^{3}+\frac{1}{x^{3}})$ is:
Question : If $\frac {x^2+3x+1}{x^2–3x+1}=\frac{1}{2 }$, then the value of $(x+\frac{1}{x})$ is:
Question : If $(x+\frac{1}{x})=–2$, then the value of $(x^7+\frac{1}{x^7})$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile