Question : If $x+5+\frac{1}{x+1}=6$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
Option 1: 2
Option 2: 0
Option 3: –2
Option 4: 4
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 2
Solution : Given: $x+5+\frac{1}{x+1}=6$ Subtracting both sides 4 $x+1+\frac{1}{x+1}=2$ Use formula, $a^3+b^3 = (a+b)^3-3ab(a+b)$ So, $(x+1)^{3}+\frac{1}{(x+1)^{3}}=2^3-3\times 2$ $= 8 – 6 = 2$ Hence, the correct answer is 2.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(-\frac{1}{2}) \times (x-5) + 3 = -\frac{5}{2}$, then what is the value of $x$?
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $x+\frac{1}{x}=5$, then the value of $\frac{x}{1+x+x^2}$ is:
Question : If $(x+\frac{1}{x})=–2$, then the value of $(x^7+\frac{1}{x^7})$ is:
Question : If $(x+\frac{1}{x})^2=3$, then what is the value of $x^6 + x^{–6}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile