Question : If $a=299, b=298, c=297$, then the value of $2a^3+2b^3+2c^3-6abc$ is:
Option 1: 5154
Option 2: 5267
Option 3: 5364
Option 4: 5456
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 5364
Solution : Given: $a=299, b=298, c=297$ We know that the algebraic identity is $(a^3+b^3+c^3-3abc)=\frac{1}{2} \times(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$ $2a^3+2b^3+2c^3-6abc$ $=2(a^3+b^3+c^3-3abc)$ $=2\times\frac{1}{2} \times(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$ $=2\times\frac{1}{2} \times(299+298+297)[(299-298)^2+(298-297)^2+(297-299)^2]$ $=894[1^2+1^2+2^2]=894\times6$ $= 5364$ Hence, the correct answer is 5364.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{a}{1-2a}+\frac{b}{1-2b}+\frac{c}{1-2c}=\frac{1}{2}$, then the value of $\frac{1}{1-2a}+\frac{1}{1-2b}+\frac{1}{1-2c}$ is:
Question : The value of $x$ which satisfies the equation $\frac{x \:+\: a^2 \:+\: 2c^2}{b \:+\: c} + \frac{x \:+\: b^2 \:+\: 2a^2}{c+a} + \frac{x \:+\: c^2 \:+\: 2b^2}{a \:+\: b} = 0$ is:
Question : If $x+\frac{1}{x}=c+\frac{1}{c}$, then the value of $x$ is:
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : What is the value of a2 + b2 + c2 – 2ab – 2bc + 2ca?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile