Question : If $x=1+\sqrt{2}+\sqrt{3}$, then the value of $(2x^4-8x^3-5x^2+26x-28)$ is:
Option 1: $2\sqrt{2}$
Option 2: $3\sqrt{3}$
Option 3: $5\sqrt{5}$
Option 4: $6\sqrt{6}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $6\sqrt{6}$
Solution : Given: $x=1+\sqrt{2}+\sqrt{3}$ We know that the algebraic identities are $(x-y)^2=x^2+y^2-2xy$ and $(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2zx$. $x-1=\sqrt{2}+\sqrt{3}$ On squaring both sides of the above equation, we get, $(x-1)^2=(\sqrt{2}+\sqrt{3})^2$ ⇒ $(x^2+1-2x)=(3+2+2\sqrt{6})$ ⇒ $(x^2-2x-4)=2\sqrt{6}$ (equation 1) On squaring both sides of the above equation, we get, $(x^2-2x-4)^2=(2\sqrt{6})^2$ ⇒ $x^4+4x^2+16-4x^3+16x-8x^2=24$ ⇒ $x^4-4x^3-4x^2+16x-8=0$ Multiply by 2 on both sides of the above equation, we get, $2(x^4-4x^3-4x^2+16x-8)=0$ ⇒ $2x^4-8x^3-8x^2+32x-16=0$ ⇒ $2x^4-8x^3-5x^2+26x-28-3x^2+6x+12=0$ ⇒ $2x^4-8x^3-5x^2+26x-28=3(x^2-2x-4)$ From equation 1, substitute the value in the above equation and we get, $(2x^4-8x^3-5x^2+26x-28)=3\times2\sqrt{6}$ ⇒ $(2x^4-8x^3-5x^2+26x-28)=6\sqrt{6}$ Hence, the correct answer is $6\sqrt{6}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sqrt{5x-6}+\sqrt{5x+6}=6$, then what is the value of $x$?
Question : If $x^2-7 x+1=0$ and $0<x<1$, what is the value of $x^2-\frac{1}{x^2}?$
Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Question : If $(x+\frac{1}{x})$ = 5, then the value of $\frac{5x}{x^{2}+5x+1}$ is:
Question : If $\sqrt{x}=\sqrt{3}-\sqrt{5}$, then the value of $x^2-16x+6$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile