Question : If $x^2-4x+1=0$, then the value of $\frac{x^6+1}{x^3}$ is:
Option 1: 48
Option 2: 52
Option 3: 55
Option 4: 58
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 52
Solution : Given: $x^2-4x+1=0$ Dividing both sides by $x$ we get, ⇒ $x-4+\frac{1}{x}=0$ ⇒ $x+\frac{1}{x}=4$ ⇒ $(x+\frac{1}{x})^3=4^3$ ⇒ $x^3+\frac{1}{x^3}+3×x×\frac{1}{x}×(x+\frac{1}{x})=64$ ⇒ $x^3+\frac{1}{x^3}+3×4=64$ [as, $x+\frac{1}{x}=4$] ⇒ $x^3+\frac{1}{x^3}=64-12$ $\therefore \frac{x^6+1}{x^3}=52$ Hence, the correct answer is 52.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left (4x+\frac{1}{x} \right)=5,x\neq 0,$ then the value of $\frac{5x}{4x^{2}+10x+1}$ is:
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $x-\frac{3}{x}=6, x \neq 0$, then the value of $\frac{x^4-\frac{27}{x^2}}{x^2-3 x-3}$ is:
Question : If $x+5+\frac{1}{x+1}=6$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile