Question : If $\frac{1}{a}(a^2+1)=3$, then the value of $\frac{a^6+1}{a^3}$ is:
Option 1: 9
Option 2: 18
Option 3: 27
Option 4: 1
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 18
Solution : Given: $\frac{1}{a}(a^2+1)=3$ ⇒ $a+\frac{1}{a}=3$ ⇒ $(a+\frac{1}{a})^3=3^3$ ⇒ $a^3+\frac{1}{a^3}+3×a×\frac{1}{a}(a+\frac{1}{a})=27$ ⇒ $a^3+\frac{1}{a^3}+3×3=27$ [as, $a+\frac{1}{a}=3$] ⇒ $a^3+\frac{1}{a^3}=27-9$ $\therefore \frac{a^6+1}{a^3}=18$ Hence, the correct answer is 18.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{(a+b)}{c}=\frac{6}{5}$ and $\frac{(b+c)}{a}=\frac{9}{2}$, then what is the value of $\frac{(a+c)}{b}\; ?$
Question : If $x\left(3-\frac{2}{x}\right)=\frac{3}{x}$, then the value of $x^3-\frac{1}{x^3}$ is equal to:
Question : If $(a+\frac{1}{a})^{2}=3$, then the value of $a^{18}+a^{12}+a^{6}+1$ is:
Question : If $2x-\frac{1}{2x}=5,x\neq0$, then the value of $(x^2+\frac{1}{16x^2}-2)$is:
Question : If $a=-12, b=-6$, and $c=18$, then what is the value of $\frac{2 a b c}{9}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile