Question : If $5\cos\theta+12\sin\theta=13,\ 0^0<\theta<90^0$, then the value of $\sin\theta$ is:
Option 1: $\frac{5}{13}$
Option 2: $–\frac{12}{13}$
Option 3: $\frac{6}{13}$
Option 4: $\frac{12}{13}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{12}{13}$
Solution : Given: $5\cos\theta+12\sin\theta=13,\ 0^0<\theta<90^0$ Here, $5\cos\theta+12\sin\theta=13$ ⇒ $(\frac{5}{13})\cos\theta+(\frac{12}{13})\sin\theta=1$ Comparing it with $\cos^2\theta+\sin^2\theta=1$ we get, $\cos\theta=\frac{5}{13}$ and $\sin\theta=\frac{12}{13}$ Hence, the correct answer is $\frac{12}{13}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $2 \cot \theta = 3$, find the value of $\frac{\sqrt{13} \sin \theta – 3 \tan \theta}{3 \tan \theta + \sqrt{13} \cos \theta}$
Question : If $7\sin^{2}\theta+3\cos^{2}\theta=4$, and $0^{\circ}< \theta< 90^{\circ}$, then the value of $\tan\theta$ is:
Question : If $7\sin^2\ \theta+3\cos^2\ \theta=4, (0°<\theta<90°)$, then find the value of $\tan\theta$:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile