Question : If $\cos27^{\circ}$ = $x$, then the value of $\tan 63°$ is:
Option 1: $\frac{x}{\sqrt{1–x^2}}$
Option 2: $\frac{x}{\sqrt{1+x^2}}$
Option 3: $\frac{\sqrt{1–x^2}}{x}$
Option 4: $\frac{\sqrt{1+x^2}}{x}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{x}{\sqrt{1–x^2}}$
Solution : In $\triangle ABC$, ⇒ $\cos\ 27°$ = $x$ ⇒ $\frac{AB}{BC}$ = $\frac{x}{1}$ By Pythagoras theorem, Perpendicular 2 + Base 2 = Hypotenuse 2 ⇒ AC 2 + AB 2 = BC 2 ⇒ AC 2 = BC 2 – AB 2 = $1–x^2$ ⇒ AC = $\sqrt{1–x^2}$ $\tan 63°$ = $\frac{AB}{AC}$ = $\frac{x}{\sqrt{1–x^2}}$ Hence, the correct answer is $\frac{x}{\sqrt{1–x^2}}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Question : If $x\cos^{2}30^{\circ}\cdot \sin60^{\circ}=\frac{\tan^{2}45^{\circ}\cdot \sec60^{\circ}}{\operatorname{cosec}60^{\circ}}$, then the value of $x$ is:
Question : What is the value of $\frac{\tan 45^{\circ}-\tan 15^{\circ}}{1+\tan 45^{\circ} \tan 15^{\circ}}$?
Question : If ${\operatorname{cosec} 39^{\circ}} = x$, then the value of $ \frac{1}{\operatorname{cosec}^2 51^{\circ}} +\sin^239^{\circ} +\tan ^251^{\circ} -\frac{1}{\sin ^2 51^{\circ} \sec ^2 39^{\circ}}$ is:
Question : If $x\sin ^{2}60^{\circ}-\frac{3}{2}\sec 60^{\circ}\tan^{2}30^{\circ}+\frac{4}{5}\sin ^{2}45^{\circ}\tan ^{2}60^{\circ}=0$, then $x$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile