Question : If $\tan A=\frac{3}{8}$, then the value of $\frac{3 \sin A+2 \cos A}{3 \sin A-2 \cos A}$ is:
Option 1: $-\frac{13}{25}$
Option 2: $-\frac{25}{7}$
Option 3: $\frac{25}{8}$
Option 4: $\frac{13}{21}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-\frac{25}{7}$
Solution : Given: $\frac{3 \sin A+2 \cos A}{3 \sin A-2 \cos A}$ Dividing both numerator and denominator by $\cos A$, = $\frac{3 \tan A+2}{3 \tan A-2}$ = $\frac{3(\frac{3}{8})+2}{3(\frac{3}{8})-2}$ = $-\frac{25}7$ Hence, the correct answer is $-\frac{25}7$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $\sin A=\frac{5}{13}$ and $7 \cot B=24$, then the value of $(\sec A \cos B)(\operatorname{cosec} B \tan A)$ is:
Question : What is the value of the given expression if $3\cot A=\frac{7}{3}$? $\frac{3 \cos A+2 \sin A}{3 \cos A-2 \sin A}$
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\cos \theta=\frac{12}{13}$, then the value of $\frac{\sin \theta(1-\tan \theta)}{\tan \theta(1+\operatorname{cosec} \theta)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile