Question : If $\cot A=\frac{12}{5}$, then the value of $(\sin A+\cos A) \times \operatorname{cosec} A$ is_____.
Option 1: $\frac{13}{5}$
Option 2: $\frac{17}{5}$
Option 3: $\frac{14}{5}$
Option 4: 1
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{17}{5}$
Solution : Given: $\cot A=\frac{12}{5}$ Now, $(\sin A+\cos A)×\operatorname{cosec}A$ $= (\sin A×\operatorname{cosec}A)+(\cos A×\operatorname{cosec}A)$ $= 1+\cot A$ $= (1+\frac{12}{5})$ $= \frac{17}{5}$ Hence, the correct answer is $\frac{17}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\sin A=\frac{5}{13}$ and $7 \cot B=24$, then the value of $(\sec A \cos B)(\operatorname{cosec} B \tan A)$ is:
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\operatorname{cosec} \theta+\cot \theta=p$, then the value of $\frac{p^2-1}{p^2+1}$ is:
Question : If $\cot A=\frac{12}{5}$, then the value of $\sin A=?$
Question : $\frac{1+\cos \theta-\sin ^2 \theta}{\sin \theta(1+\cos \theta)} \times \frac{\sqrt{\sec ^2 \theta+\operatorname{cosec}^2 \theta}}{\tan \theta+\cot \theta}, 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile