Question : If $\frac{\sin x-\cos x}{\sin x+\cos x}=\frac{2}{5}$, then the value of $\frac{1+\cot ^2 x}{1-\cot ^2 x}$ is:
Option 1: 2.25
Option 2: 1.45
Option 3: 3.75
Option 4: 5.25
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1.45
Solution : $\frac{\sin x-\cos x}{\sin x+\cos x}=\frac{2}{5}$ Dividing both the numerator and denominator by $\cos x$ ⇒ $\frac{1-\cot x}{1+\cot x}=\frac{2}{5}$ ⇒ $5-5\cot x=2+2\cot x$ ⇒ $\cot x=\frac{3}{7}$ So, $\frac{1+\cot ^2 x}{1-\cot ^2 x}$=$\frac{1+(\frac{3}7) ^2}{1-(\frac{3}7)^2 }=\frac{58}{40} = 1.45$ Hence, the correct answer is 1.45.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $2\cot x=5$, then what is $\frac{2 \cos x-\sin x}{2 \cos x+\sin x}$ equal to?
Question : If $\sin (x+y) = \cos (x–y)$, then the value of $\cos^2 x$ is:
Question : If $\cos x+\sin x=\sqrt{2} \cos x$, what is the value of $(\cos x-\sin x)^2+(\cos x+\sin x)^2$?
Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Question : If $\tan x = \frac{7}{5}$, the value of $\frac{9 \sin x – \frac{42}{5} \cos x}{15 \sin x + 21 \cos x}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile