Question : If $\sqrt{0.04\times 0.4\times a}=0.004\times 0.4\times \sqrt{b},$ then the value of $\frac{a}{b}$ is:
Option 1: $16\times 10^{-3}$
Option 2: $16\times 10^{-4}$
Option 3: $16\times 10^{-5}$
Option 4: $16 \times 10^{-6}$
Correct Answer: $16\times 10^{-5}$
Solution : $\sqrt{0.04\times 0.4\times a}=0.004\times 0.4\times \sqrt{b}$ Squaring both sides, we get, $⇒0.04\times 0.4\times a=0.004^2\times 0.4^2\times {b}$ $⇒\frac{a}{b} = \frac{0.004 \times 0.004 \times 0.4 \times \times0.4}{0.04 \times 0.4}$ $⇒\frac{a}{b} = \frac{16}{10^{5}}$ $\therefore$ $\frac{a}{b} = 16 \times 10^{-5}$ Hence, the correct answer is $16 \times 10^{-5}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of the following expression $\frac{0.2×0.02×0.002×32}{0.4×0.04×0.004×16}$ is:
Question : If $\sin A=\frac{1}{2}$, then the value of $(\tan A+\cos A)$ is:
Question : If $a-\frac{1}{a}=4$, then the value of $a+\frac{1}{a}$ is:
Question : $\frac{1}{3-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{5}}+\frac{1}{\sqrt{5}-2}=?$
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile