Question : If $x+\frac{2}{x}=1$, then the value of $\frac{x^2+7x+2}{x^2+13x+2}$ is:
Option 1: $\frac{5}{7}$
Option 2: $\frac{3}{7}$
Option 3: $\frac{4}{7}$
Option 4: $\frac{2}{7}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4}{7}$
Solution : Given: $x+\frac{2}{x}=1$ Now, $\frac{x^2+7 x+2}{x^2+13 x+2}$ Taking $x$ as common from the numerator and the denominator, we get, $\frac{x(x+7 +\frac{2}{x})}{x(x + 13 + \frac{2}{x})} = \frac{1 + 7}{1 + 13} = \frac{8}{14} = \frac{4}{7}$ Hence, the correct answer is $\frac{4}{7}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\frac{x}{y}=\frac{4}{5}$, then the value of $(\frac{4}{7}+\frac{2y–x}{2y+x})$ is:
Question : If $x+\frac{1}{x}=3$, then the value of $\frac{3x^{2}-4x+3}{x^{2}-x+1}$ is:
Question : If $x+\frac{1}{x}=7$, then the value of $x^2+\frac{1}{x^2}$ is:
Question : If $2 x+\frac{2}{x}=5$, then the value of $\left(x^3+\frac{1}{x^3}+2\right)$ will be:
Question : If $x+\frac{1}{x}=2$, then find the value of $x^5+\frac{1}{x^5}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile