Question : If $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$, then the value of $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ is:
Option 1: $\frac{16}{25}$
Option 2: $\frac{40}{41}$
Option 3: $\frac{41}{40}$
Option 4: $\frac{31}{30}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{41}{40}$
Solution : Given: $\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}=\frac{4}{5}$ ⇒ $5\sin \theta - 5\cos \theta = 4\sin \theta + 4\cos \theta$ $\sin \theta = 9\cos \theta$ Dividing both sides by $\cos \theta$, we get: $\tan \theta = 9$ Now, we know that: $\tan\theta=\frac{p}{b}=\frac{9}{1}$ So, $h=\sqrt{p^2+b^2}=\sqrt{9^2+1^2}=\sqrt{82}$ Now, $\frac{\operatorname{cosec}^2 \theta}{2-\operatorname{cosec}^2 \theta}$ ⇒ $\frac{(\frac{h}{p})^{2}}{2-(\frac{h}{p})^{2}}$ Putting the values of $p$, $b$ and $h$, we get: = $\frac{\frac{82}{81}}{2-\frac{82}{81}}$ = $\frac{\frac{82}{81}}{\frac{162-82}{81}}$ = $\frac{82}{80}$ = $\frac{41}{40}$ Hence, the correct answer is $\frac{41}{40}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin \theta+\cos \theta=\frac{1}{29}$, then find the value of $\frac{\operatorname{sin} \theta+\operatorname{cos} \theta}{\operatorname{sin} \theta-\operatorname{cos} \theta}$.
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Question : If $6 \sec \theta=10$, then find the value of $\frac{5 \operatorname{cosec} \theta-3 \cot \theta}{4 \cos \theta+3 \sin \theta}$.
Question : If $\sin \theta-\cos \theta=\frac{1}{5}$, then find the value of $\sin \theta+\cos \theta$.
Question : If $\operatorname{tan} \theta=\frac{3}{4}$, then find the value of expression $\frac{1+\operatorname{sin} \theta}{1-\operatorname{sin} \theta}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile