Question : If $a^2+b^2+c^2=ab+bc+ca$, then the value of $\frac{11a^4+13b^4+15c^4}{16a^2b^2+19b^2c^2+17c^2a^2}$ is:
Option 1: $1 \frac{1}{3}$
Option 2: $\frac{1}{4}$
Option 3: $\frac{3}{4}$
Option 4: $1 \frac{3}{4}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{4}$
Solution : Given: $a^2+b^2+c^2=ab+bc+ca$ So, $2a^2+2b^2+2c^2-2a b-2b c-2c = 0$ ⇒ $(a-b)^2+(b-c)^2+(c-a)^2=0$ If some of the positive terms are 0, the terms are themselves 0. ⇒ $(a-b)=(b-c)=(c-a)=0$ ⇒ $a=b=c$ So, $\frac{11a^4+13b^4+15c^4}{16a^2b^2+19b^2c^2+17c^2a^2}$ = $\frac{11a^4+13a^4+15a^4}{16a^2a^2+19a^2a^2+17a^2a^2}$ = $\frac{11+13+15 }{16+19+17}$ = $\frac{39}{52}$ = $\frac{3}{4}$ Hence, the correct answer is $\frac{3}{4}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : For real $a, b, c$ if $a^2+b^2+c^2=ab+bc+ca$, then value of $\frac{a+c}{b}$ is:
Question : If $\sec\theta+\tan\theta=a$, then what is the value of $\sec\theta$?
Question : What is the value of (a + b + c) {(a - b)2 + (b - c)2 + (c - a)2}?
Question : The simplified value of the following is: $\left (\frac{3}{15}a^{5}b^{6}c^{3}\times \frac{5}{9}ab^{5}c^{4} \right )\div \frac{10}{27}a^{2}bc^{3}$.
Question : If $\small c+\frac{1}{c}=3$, then the value of $\left (c-3 \right )^{7}+\frac{1}{c^{7}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile