Question : If $\tan \theta=\frac{8}{15}$, then the value of $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$ is:
Option 1: $\frac{1}{5}$
Option 2: $\frac{3}{5}$
Option 3: $\frac{2}{5}$
Option 4: $\frac{4}{5}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{3}{5}$
Solution : $\tan \theta=\frac{8}{15}=\frac{\text{Perpendicular}}{\text{Base}}$ $\therefore$ Hypotenuse = $\sqrt{8^2+15^2}=\sqrt{289}= 17$ So, $\sin \theta=\frac{8}{17}$ $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=\sqrt{\frac{1-\frac{8}{17}}{1+\frac{8}{17}}}=\sqrt{\frac{\frac{9}{17}}{\frac{25}{17}}}=\sqrt{\frac{9}{25}}=\frac{3}{5}$ Hence, the correct answer is $\frac{3}{5}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\tan\theta+\sec\theta=3$, $\theta$ being acute, the value of $5\sin\theta$ is:
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Question : If $\sqrt{2} \sec ^2 \theta-4 \sec \theta+2 \sqrt{2}=0$, then what is the value $\sin ^2 \theta+\tan ^2 \theta$?
Question : If $\sin 2\theta=\frac{\sqrt{3}}{2}$, then what is the value of $\tan \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile