Question : If $x + \frac{1}{x} = \sqrt{3}$, then the value of $x^{18} + x^{12} + x^{6} + 1$ is:
Option 1: 0
Option 2: 1
Option 3: 2
Option 4: 3
Correct Answer: 0
Solution : $x^{18}+x^{12}+x^{6}+1$ = $x^{6}(x^{12}+1)+1(x^{12}+1)$ = $(x^{6}+1)(x^{12}+1)$ --------------------------(i) $x+\frac{1}{x} = \sqrt{3}$ Squaring both sides, we get, ⇒ $(x+\frac{1}{x})^2 = (\sqrt{3})^2$ ⇒ $(x)^2+(\frac{1}{x})^2+2×x×\frac{1}{x} = 3$ ⇒ $(x)^2+(\frac{1}{x})^2 = 3-2 = 1$ Cubing both sides, we get, $((x)^2+(\frac{1}{x})^2)^3 = 1^3$ ⇒ $(x)^6+(\frac{1}{x})^6+3×((x)^2+(\frac{1}{x})^2) = 1^3$ ⇒ $(x)^6+(\frac{1}{x})^6 = 1 - 3$ ⇒ $\frac{((x)^{12}+1)}{(x)^6} = -2$ ⇒ $x^{12}+1+2x^6 = 0$ ⇒ $(x^{6}+1)^2 = 0$ ⇒ $(x^{6}+1) = 0$ -------------------------(ii) Substituting (ii) in (i), we have, $(x^{6}+1)(x^{12}+1)$ = 0 Thus, $x^{18}+x^{12}+x^{6}+1$ = 0 Hence, the correct answer is 0.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : If $a= \frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}-\sqrt{x-2}}$, then the value of $(a^{2}-ax)$ is:
Question : If $x^2-2\sqrt{10}x+1=0$, what is the value of $(x-\frac{1}{x})$?
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile