Question : If $(4 \sin \theta+5 \cos \theta)=3$, then the value of $(4 \cos \theta-5 \sin \theta)$ is:
Option 1: $3 \sqrt{2}$
Option 2: $4 \sqrt{2}$
Option 3: $2 \sqrt{3}$
Option 4: $2 \sqrt{5}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4 \sqrt{2}$
Solution : $(4 \sin \theta+5 \cos \theta)=3$ Squaring both sides, we get, $⇒16 \sin^2 \theta+25 \cos^2 \theta+40\sin\theta\cos\theta=9$ $⇒16(1-\cos^2 \theta)+25(1-\sin^2 \theta) + 40\sin\theta\cos\theta= 9$ $⇒16-16\cos^2\theta+25-25\sin^2\theta+40\sin\theta\cos\theta=9$ $⇒16\cos^2\theta+25\sin^2\theta-40\sin\theta\cos\theta=16+25-9$ $⇒(4\cos\theta)^2+(5\sin\theta)^2-2\times 5\sin\theta \times 4\cos\theta=32$ $⇒(4\cos\theta - 5\sin\theta)^2 = 32$ $⇒(4\cos\theta - 5\sin\theta) = \sqrt{32}=4\sqrt{2}$ Hence, the correct answer is $4\sqrt{2}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin\theta+\cos\theta=\sqrt{2}\cos\theta$, then the value of $\cot\theta$ is:
Question : If $\frac{\sin\theta+\cos\theta}{\sin\theta-\cos\theta}=3$, then the value of $\sin^{4}\theta$ is:
Question : If $\sin \theta \cos \theta=\frac{1}{\sqrt{3}}$ then the value of $\left(\sin ^4 \theta+\cos ^4 \theta\right)$ is:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $\sin \theta \cos \theta=\frac{\sqrt{2}}{3}$,then the value of $\left(\sin ^6 \theta+\cos ^6 \theta\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile