Question : If $\operatorname{tan} 15^{\circ}=2-\sqrt{3}$, then the value of $\operatorname{tan} 15^{\circ} \operatorname{cot} 75^{\circ}+\operatorname{tan} 75^{\circ} \operatorname{cot} 15^{\circ}$ is:
Option 1: 6
Option 2: 10
Option 3: 8
Option 4: 14
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 14
Solution : Given: $\tan 15°= 2 - \sqrt{3}$ and $\cot 15° = \frac{1}{\tan15°}=\frac{1}{(2 - \sqrt{3})} =2+\sqrt{3}$ [on rationalizing] $\tan 15° × \cot 75° + \tan 75° × \cot 15°$ = $\tan 15° × \cot (90° – 15°) + \tan (90° – 15°) × \cot 15°$ = $\tan 15° × \tan 15° + \cot 15° × \cot 15°$ = $\tan^2 15°+\cot^2 15°$ = $(2 - \sqrt{3})^2+(2 + \sqrt{3})^2$ = $7 - 4\sqrt{3} + 7 + 4\sqrt{3}$ = $7 + 7$ = $14$ Hence, the correct answer is 14.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Question : Find the value of $\cos 0^{\circ}+\cos 30^{\circ}-\tan 45^{\circ}+\operatorname{cosec} 60^{\circ}+\cot 90^{\circ}$.
Question : The value of the expression
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Question : The value of $\frac{\sec 54^{\circ}}{\operatorname{cosec} 36^{\circ}}+\frac{\tan 70^{\circ}}{\cot 20^{\circ}}-2 \tan 45^{\circ}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile