Question : If $\frac{1}{x^2+a^2}=x^2-a^2$, then the value of $x$ is:
Option 1: $\left(1-a^4\right)^\frac{1}{4}$
Option 2: $a$
Option 3: $\left(a^4-1\right)^\frac{1}{4}$
Option 4: $\left(a^4+1\right)^\frac{1}{4}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\left(a^4+1\right)^\frac{1}{4}$
Solution : Given, $\frac{1}{x^2+a^2}=x^2-a^2$ $⇒1=(x^2-a^2)(x^2+a^2)$ $⇒1=x^4-a^4$ $⇒x^4 = 1+a^4$ $\therefore x=(1+a^4)^\frac{1}{4}$ Hence, the correct answer is $(a^4+1)^\frac{1}{4}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^{2} -3x +1=0$, then the value of $\frac{\left(x^4+\frac{1}{x^2}\right)}{\left(x^2+5 x+1\right)}$ is:
Question : If $\frac{x}{2}-\frac{\left [4\left (\frac{15}{2}-\frac{x}{3} \right ) \right ]}{3} = –\frac{x}{18}$ then what is the value of $x$?
Question : If $\frac{5}{2}-\left (\frac{6}{5}\right )\left (x-\frac{15}{2} \right)=\frac{-x}{5}$, then what is the value of $x$?
Question : If $2x+\frac{1}{2x}=2,$ what is the value of $\sqrt{2\left (\frac{1}{x}\right)^{4}+\left (\frac{1}{x}\right)^{5}}\; ?$
Question : If $\left(x+\frac{1}{x}\right)=5 \sqrt{2}$, then what is the value of $\left(x^4+x^{-4}\right)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile