Question : If $x+\frac{1}{x}=1$, then the value of $x^{12}+x^9+x^6+x^3+1$ is:
Option 1: 1
Option 2: - 1
Option 3: 0
Option 4: - 2
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : We have to find the value of $x^{12} + x^9 + x^6 + x^3 + 1$ Given, $x + \frac{1}{x} = 1$ $x^2 + 1 = x$ ⇒ $x^2 - x + 1 = 0$ ⇒ $x^3+1^3=(x + 1)(x^2 - x + 1) $ ⇒ $(x^3 + 1^3) = 0$ ⇒ $x^3 = -1$ According to the question, $=x^{12} + x^9 + x^6 + x^3 + 1$ $=(x^3)^4 + (x^3)^3 + (x^3)^2 + (x^3) + 1$ $=(−1)^4 + (-1)^3 + (-1)^2 + (-1) + 1$ $=1 - 1 + 1 - 1 + 1$ $=3 - 2 = 1$ The value of $x^{12} + x^9 + x^6 + x^3 + 1$ is 1. Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $(x+\frac{1}{x})\neq 0$ and $(x^3+\frac{1}{x^3})= 0$, then the value $(x+\frac{1}{x})^4$ is:
Question : If $2 x^2-7 x+5=0$, then what is the value of $x^2+\frac{25}{4 x^2} ?$
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $x-\frac{3}{x}=6, x \neq 0$, then the value of $\frac{x^4-\frac{27}{x^2}}{x^2-3 x-3}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile