Question : If $y+\frac{1}{y}=11$, then the value of $y^3-\frac{1}{y^3}$ is:
Option 1: $345 \sqrt{13}$
Option 2: $360 \sqrt{13}$
Option 3: $352 \sqrt{13}$
Option 4: $368 \sqrt{13}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $360 \sqrt{13}$
Solution : Given, $y+\frac{1}{y}=11$ Squaring both sides, we get: $⇒(y+\frac{1}{y})^2=11^2$ $⇒(y-\frac{1}{y})^2+4(y)(\frac{1}y)=121$ $⇒(y-\frac{1}{y})^2+4=121$ $⇒(y-\frac{1}{y})^2=121-4$ $⇒(y-\frac{1}{y})=3\sqrt{17}$ Cubing both sides, we get: $⇒(y-\frac{1}{y})^3=(3\sqrt{17})^3$ $⇒y^3-\frac{1}{y^3}-3(y)(\frac{1}{y})(y-\frac{1}{y})=351\sqrt{13}$ $⇒y^3-\frac{1}{y^3}-3(3\sqrt{17})=351\sqrt{13}$ $⇒y^3-\frac{1}{y^3}=351\sqrt{13}+9\sqrt{13}$ $\therefore y^3-\frac{1}{y^3}=360\sqrt{13}$ Hence, the correct answer is $360\sqrt{13}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : The value of $\frac{1}{4-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-3}-\frac{1}{3-\sqrt{8}}$ is:
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : Let $x=\frac{\sqrt{13}+\sqrt{11}}{\sqrt{13}-\sqrt{11}}$ and $y=\frac{1}{x}$, then the value of $3x^{2}-5xy+3y^{2}$ is:
Question : If $\frac{11-13x}{x}+\frac{11-13y}{y}+\frac{11-13z}{z}=5$, then what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile