Question : If $(x+\frac{1}{x})^2=3$, then the value of $x^{72}+x^{66}+x^{54}+x^{24}+x^6+1$ is:
Option 1: $0$
Option 2: $2$
Option 3: $3$
Option 4: $4$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $0$
Solution : Given: $(x+\frac{1}{x})^2=3$ We know that the algebraic identity is $(x+\frac{1}{x})^3=x^3+\frac{1}{x^3}+3(x+\frac{1}{x})$. $(x+\frac{1}{x})^2=3$ By taking the square root on both sides of the above equation, we get, $(x+\frac{1}{x})=\sqrt3$ By taking the cube on both sides of the above equation, we get, $(x+\frac{1}{x})^3=(\sqrt3)^3$ ⇒ $x^3+\frac{1}{x^3}+3(x+\frac{1}{x})=3\sqrt3$ Substitute the value of $(x+\frac{1}{x})=\sqrt3$ in above equation, $x^3+\frac{1}{x^3}+3\sqrt3=3\sqrt3$ ⇒ $x^3+\frac{1}{x^3}=3\sqrt3-3\sqrt3$ ⇒ $x^3+\frac{1}{x^3}=0$ ⇒ $x^6+1=0$ ⇒ $x^6=–1$ Substitute the value of $x^6=–1$ in given expression, $x^{72}+x^{66}+x^{54}+x^{24}+x^6+1$ $=(x^6)^{12}+(x^6)^{11}+(x^6)^{9}+(x^6)^{4}+x^6+1$ $=(–1)^{12}+(–1)^{11}+(–1)^{9}+(–1)^{4}+(–1)+1$ $=1-1-1+1-1+1=0$ Hence, the correct answer is $0$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x-\frac{3}{x}=6, x \neq 0$, then the value of $\frac{x^4-\frac{27}{x^2}}{x^2-3 x-3}$ is:
Question : If $x+\frac{1}{x}=6$, then find the value of $\frac{3 x}{2 x^2-5 x+2}$.
Question : If $x+5+\frac{1}{x+1}=6$, then the value of $(x+1)^{3}+\frac{1}{(x+1)^{3}}$ is:
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $x+\frac{1}{x}=2$, then the value of $x^{2}+\frac{1}{x^{6}}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile