Question : If $y=1+\sqrt{3}+\sqrt{4}$, then the value of $2 y^4-8 y^3-6 y^2+28 y-84$ is:
Option 1: $40 \sqrt{3}$
Option 2: $80 \sqrt{3}$
Option 3: $20 \sqrt{3}$
Option 4: $60 \sqrt{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $40 \sqrt{3}$
Solution : $y=1+\sqrt{3}+\sqrt{4}=1+\sqrt{3}+2= 3+\sqrt{3}$ -----------(i) Now, $2 y^4-8 y^3-6 y^2+28 y-84$ = $2y^2(y^2-4y-3)+28y-84$ = $2y^2(y^2-4y+4-4-3)+28y-84$ = $2y^2((y-2)^2-7)+28y-84$ Substituting the value of $y$ from (i), $2y^2((y-2)^2-7)+28y-84$ = $2(3+\sqrt{3})^2[(3+\sqrt{3}-2)^2-7]+28(3+\sqrt{3})-84$ = $2(9+6\sqrt{3}+3)[(1+2\sqrt{3}+3)-7]+84+28\sqrt{3}-84$ = $(24+12\sqrt{3})(2\sqrt{3}-3)+28\sqrt{3}$ = $48\sqrt{3}+72-72-36\sqrt{3}+28\sqrt{3}$ = $40\sqrt{3}$ Hence, the correct answer is $40\sqrt{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Question : If $(\sqrt 3 +1)^{2}=x+\sqrt 3 y$, then the value of $(x+y)$ is:
Question : If $x=1+\sqrt{2}+\sqrt{3}$, then the value of $(2x^4-8x^3-5x^2+26x-28)$ is:
Question : If $y+\frac{1}{y}=11$, then the value of $y^3-\frac{1}{y^3}$ is:
Question : If $4 x^2+y^2=40$ and $x y=6$, find the positive value of $2 x+y$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile