Question : If $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$, then the value of $\sin ^4 \theta-\cos ^4 \theta$ is:
Option 1: $\frac{5}{12}$
Option 2: $\frac{12}{13}$
Option 3: $\frac{11}{12}$
Option 4: $\frac{5}{13}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{12}{13}$
Solution : Given, $\frac{\sin \theta+\cos \theta}{\sin \theta-\cos \theta}=\frac{3}{2}$ or, $2(\sin \theta+\cos \theta)=3(\sin \theta-\cos \theta)$ or, $5\cos \theta = \sin \theta$ We know that $\sin^2 A+\cos^2 A=1$ Using $5\cos \theta = \sin \theta$, we get $25\cos^2 \theta +\cos^2 \theta=1$ or, $\cos^2 \theta = \frac{1}{26}$ Since $(a^2-b^2)=(a-b)(a+b)$ $\sin ^4 \theta-\cos ^4 \theta = (\sin ^2 \theta-\cos ^2 \theta$)($\sin ^2 \theta+\cos ^2 \theta$) or, $\sin ^4 \theta-\cos ^4 \theta= (\sin ^2 \theta-\cos ^2 \theta$) or, $\sin ^4 \theta-\cos ^4 \theta= 25\cos ^2 \theta-\cos ^2 \theta$ or, $\sin ^4 \theta-\cos ^4 \theta= 24\cos ^2 \theta$ or, $\sin ^4 \theta-\cos ^4 \theta= 24\times\frac{1}{26}$ or, $\sin ^4 \theta-\cos ^4 \theta= 12\times\frac{1}{13}$ Hence, the correct answer is $\frac{12}{13}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $4 \tan \theta=3$, then $\frac{4 \sin \theta-\cos \theta+1}{4 \sin \theta+\cos \theta-1}=?$
Question : If $5\cos\theta+12\sin\theta=13,\ 0^0<\theta<90^0$, then the value of $\sin\theta$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $\sin \theta-\cos \theta=\frac{4}{5}$, then find the value of $\sin \theta+\cos \theta$.
Question : If $\sqrt{3} \tan \theta=3 \sin \theta$, then what is the value of $\sin ^2 \theta-\cos ^2 \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile