Question : If $\frac{x^8+1}{x^4}=14$, then the value of $\frac{x^{12}+1}{x^6}$ is:
Option 1: 16
Option 2: 14
Option 3: 52
Option 4: 64
Correct Answer: 52
Solution : $\frac{x^8+1}{x^4}=14$ $⇒x^4+\frac{1}{x^4}=14$ $⇒x^4+\frac{1}{x^4}+2=14+2$ $⇒(x^2+\frac{1}{x^2})^2=(4)^2$ $⇒x^2+\frac{1}{x^2}=4$ Now, $\frac{x^{12}+1}{x^6}$ $=x^6+\frac{1}{x^6}$ $=(x^2)^3+\frac{1}{(x^2)^3}$ $=(x^2+\frac{1}{x^2})^3-3×x^2×\frac{1}{x^2}(x^2+\frac{1}{x^2})$ $=4^3-3(4)$ $=64-12=52$ Hence, the correct answer is 52.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : What is the simplified value of $(x^{32}+\frac{1}{x^{32}})(x^{8}+\frac{1}{x^{8}})(x-\frac{1}{x})(x^{16}+\frac{1}{x^{16}})(x+\frac{1}{x})(x^{4}+\frac{1}{x^{4}})?$
Question : If $x^4+x^{-4}=194, x>0$, then the value of $x+\frac{1}{x}$ is:
Question : If $\frac{x^{2}-x+1}{x^{2}+x+1}=\frac{2}{3}$, then the value of $\left (x+\frac{1}{x} \right)$ is:
Question : What is the value of $\frac{x^2-x-6}{x^2+x-12}÷\frac{x^2+5x+6}{x^2+7x+12}$?
Question : If $x$4 + $x$ -4 = 194, x > 0, then what is the value of $x+\frac{1}{x}+2$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile