Question : If $1 + \sin^2 θ - 3\sinθ \cosθ = 0$, then the value of $\cotθ$ is:
Option 1: $0$
Option 2: $2$
Option 3: $\frac{1}{2}$
Option 4: $\frac{1}{3}$
Correct Answer: $2$
Solution : Given: $1 + \sin^2 θ - 3\sinθ \cosθ = 0$ ⇒ $\sin^2 θ + \cos^2 θ+ \sin^2 θ - 2\sinθ \cosθ- \sinθ \cosθ = 0$ [As $\sin^2 θ + \cos^2 θ = 1$] ⇒ $\sin^2 θ + \cos^2 θ- 2\sinθ \cosθ = \sinθ \cosθ- \sin^2 θ$ ⇒ $(\sin θ - \cos θ)^2= -\sinθ(- \cosθ+ \sin θ)$ ⇒ $(\sin θ - \cos θ)(\sin θ - \cos θ)= -\sinθ(\sin θ-\cosθ)$ ⇒ $(\sin θ - \cos θ)= -\sinθ$ ⇒ $2\sin θ =\cos θ$ ⇒ $2=\cot\theta$ [dividing by $\sin θ$ in both sides] $\therefore\cot\theta = 2$ Hence, the correct answer is $2$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\sin^2\theta = \cos^3\theta$, then the value of $(\cot^2\theta -\cot^6\theta)$ is:
Question : If $\frac{\tan\theta +\cot\theta }{\tan\theta -\cot\theta }=2, (0\leq \theta \leq 90^{0})$, then the value of $\sin\theta$ is:
Question : If $\cot \theta=\frac{4}{3}, 0<\theta<\frac{\pi}{2}$, and $5 p \cos ^2 \theta \sin \theta=\cot ^2 \theta$, then the value of $p$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile