Question : If $\cos ^4 \alpha-\sin ^4 \alpha=\frac{5}{6}$, then the value of $2 \cos ^2 \alpha-1$ is:
Option 1: $\frac{11}{6}$
Option 2: $\frac{5}{6}$
Option 3: $\frac{6}{11}$
Option 4: $\frac{6}{5}$
Correct Answer: $\frac{5}{6}$
Solution : Given: $\cos ^4 \alpha-\sin ^4 \alpha=\frac{5}{6}$ ⇒ $(\cos ^2 \alpha)^2-(\sin ^2 \alpha)^2=\frac{5}{6}$ ⇒ $(\cos ^2 \alpha-\sin ^2 \alpha)(\cos ^2 \alpha+\sin ^2 \alpha)=\frac{5}{6}$ ⇒ $(\cos ^2 \alpha-\sin ^2 \alpha)=\frac{5}{6}$ [As $\cos ^2 \alpha+\sin ^2 \alpha=1$] ⇒ $\cos^2\alpha - 1+\cos^2\alpha=\frac{5}{6}$ [As $\sin^2\alpha=1-\cos^2\alpha$] $\therefore2\cos ^2 \alpha-1=\frac{5}{6}$ Hence, the correct answer is $\frac{5}{6}$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $\alpha$ is an acute angle and $2\sin \alpha+15\cos^2\alpha=7$, then the value of $\cot \alpha$ is:
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then the value of $(\cos \theta-\sin \theta)$ is:
Question : If $\cos \theta+\sec \theta=2$, then the value of $\sin ^6 \theta+\cos ^6 \theta$ is:
Question : If $\sin \theta+\cos \theta=\frac{\sqrt{11}}{3}$, then what is $\sin \theta-\cos \theta$?
Question : If $x=\frac{2 \sin \theta}{(1+\cos \theta+\sin \theta)}$, then the value of $\frac{1-\cos \theta+\sin \theta}{(1+\sin \theta)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile