Question : If $s-\frac{1}{s-8}=20$, then the value of $(s-8)^3-\frac{1}{(s-8)^3}$ is:
Option 1: 1324
Option 2: 1764
Option 3: 1864
Option 4: 1944
Correct Answer: 1764
Solution : Given: $s-\frac{1}{s-8}=20$ ⇒ $s-8-\frac{1}{s-8}=12$ ⇒ $(s-8-\frac{1}{s-8})^3=12^3$ ⇒ $(s-8)^3-(\frac{1}{s-8})^3-3×(s-8)×\frac{1}{(s-8)}(s-8-\frac{1}{s-8})=1728$ ⇒ $(s-8)^3-(\frac{1}{s-8})^3-3×12=1728$ $\therefore(s-8)^3-(\frac{1}{s-8})^3= 1764$ Hence, the correct answer is 1764.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{\frac{5}{2}-\frac{3}{7} \times 1 \frac{4}{5} \div 3 \frac{6}{7}}{\frac{3}{2}+1 \frac{2}{5} \div 3 \frac{1}{2} \times 1 \frac{1}{4}}$ is:
Question : The value of 5 ÷ [5 + 8 – {4 + (4 of 2 ÷ 4) – (2 ÷ 4 of 2)}] is:
Question : If $\frac{x^{2}-x+1}{x^{2}+x+1}=\frac{2}{3}$, then the value of $\left (x+\frac{1}{x} \right)$ is:
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : The value of $8-3 \div 6$ of $2+\left(4 \div 4\right.$ of $\left.\frac{1}{4}\right) \div 8+\left(4 \times 8 \div \frac{1}{4}\right) \times \frac{1}{8}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile