Question : If $\sqrt{1+\frac{x}{529}}=\frac{24}{23}$, then the value of $x$ is:
Option 1: 15
Option 2: 27
Option 3: 47
Option 4: 30
Correct Answer: 47
Solution : $\sqrt{1+\frac{x}{529}}=\frac{24}{23}$ Squaring both sides, $⇒1+\frac{x}{529}=\left(\frac{24}{23}\right)^2$ $⇒1+\frac{x}{529}=\frac{576}{529}$ $⇒\frac{x}{529}=\frac{576}{529}-1=\frac{47}{529}$ $\therefore x=47$ Hence, the correct answer is 47.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$; then what is the value of $x+\frac{1}{x}$?
Question : If $x^2+\frac{1}{x^2}=\frac{7}{4}$ for $x>0$, what is the value of $(x^3+\frac{1}{x^3})$?
Question : If $x\left(5-\frac{2}{x}\right)=\frac{5}{x}$, then the value of $x^2+\frac{1}{x^2}$ is:
Question : If $\cos A=\frac{1}{11}$, then find the value of cot A.
Question : If $a= \frac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x+2}-\sqrt{x-2}}$, then the value of $(a^{2}-ax)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile