Question : If $\sin^2\theta = \cos^3\theta$, then the value of $(\cot^2\theta -\cot^6\theta)$ is:
Option 1: –1
Option 2: 0
Option 3: 2
Option 4: 1
Correct Answer: –1
Solution : Given: $\sin^2\theta = \cos^3\theta$ Squaring both sides, ⇒ $\sin^4\theta = \cos^6\theta$ -------------(i) Now, $(\cot^2\theta-\cot^6\theta)$ = $\cot^2\theta - \frac{\cos^6 \theta}{\sin^6 \theta}$ = $\cot^2\theta -\frac{\sin^4 \theta}{\sin^6 \theta}$ [From equation (i)] = $\cot^2\theta -\frac{1}{\sin^2 \theta}$ = $\cot^2\theta - \operatorname{cosec}^2\theta$ = $-1$ Hence, the correct answer is –1.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $1 + \sin^2 θ - 3\sinθ \cosθ = 0$, then the value of $\cotθ$ is:
Question : If $\sin^4\theta+\cos^4\theta=2\sin^2\theta \cos^2\theta$, where $\theta$ is an acute angle, then the value of $\tan\theta$ is:
Question : If $\cos \theta+\sec \theta=2$, then the value of $\sin ^6 \theta+\cos ^6 \theta$ is:
Question : The value of $\frac{2 \cos ^3 \theta-\cos \theta}{\sin \theta-2 \sin ^3 \theta}$ is:
Question : If $\operatorname{cos} \theta+\operatorname{sin} \theta=\sqrt{2} \operatorname{cos} \theta$, find the value of $(\cos \theta-\operatorname{sin} \theta)$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile